56 research outputs found

    Adaptive Control in Wireless Networks

    Get PDF

    Priority-Oriented Adaptive Control With QoS Guarantee for Wireless LANs.

    Get PDF
    In today’s wireless networks there is a great need for QoS, because of the time-bounded voice, audio and video traffic. A new QoS enhanced standard is being standardized by the IEEE 802.11e workgroup. It uses a contention free access mechanism called Hybrid Control Channel Access (HCCA) to guarantee QoS. However, HCCA is not efficient for all types of time-bounded traffic. This work proposes an alternative protocol which could be adapted in HCF (Hybrid Coordination Function). The Priority Oriented Adaptive Control with QoS Guarantee (POAC-QG) is a complete centralized channel access mechanism, it is able to guarantee QoS for all types of multimedia network applications, it enhances the parameterized traffic with priorities, and it supports time division access using slots. Furthermore, it instantly negotiates the quality levels of the traffic streams according to their priorities, supporting multiple streams to the best quality it can achieve. POAC-QG compared to HCCA, provides higher channel utilization, adapts better to the characteristics of the different traffic types, differentiates the traffic streams more efficiently using priorities, and generally exhibits superior performance

    Evaluation of AI-Supported Input Methods in Augmented Reality Environment

    Full text link
    Augmented Reality (AR) solutions are providing tools that could improve applications in the medical and industrial fields. Augmentation can provide additional information in training, visualization, and work scenarios, to increase efficiency, reliability, and safety, while improving communication with other devices and systems on the network. Unfortunately, tasks in these fields often require both hands to execute, reducing the variety of input methods suitable to control AR applications. People with certain physical disabilities, where they are not able to use their hands, are also negatively impacted when using these devices. The goal of this work is to provide novel hand-free interfacing methods, using AR technology, in association with AI support approaches to produce an improved Human-Computer interaction solution

    Quality management of surveillance multimedia streams via federated SDN controllers in Fiwi-iot integrated deployment environments

    Get PDF
    Traditionally, hybrid optical-wireless networks (Fiber-Wireless - FiWi domain) and last-mile Internet of Things edge networks (Edge IoT domain) have been considered independently, with no synergic management solutions. On the one hand, FiWi has primarily focused on high-bandwidth and low-latency access to cellular-equipped nodes. On the other hand, Edge IoT has mainly aimed at effective dispatching of sensor/actuator data among (possibly opportunistic) nodes, by using direct peer-to-peer and base station (BS)-assisted Internet communications. The paper originally proposes a model and an architecture that loosely federate FiWi and Edge IoT domains based on the interaction of FiWi and Edge IoT software defined networking controllers: The primary idea is that our federated controllers can seldom exchange monitoring data and control hints the one with the other, thus mutually enhancing their capability of end-to-end quality-aware packet management. To show the applicability and the effectiveness of the approach, our original proposal is applied to the notable example of multimedia stream provisioning from surveillance cameras deployed in the Edge IoT domain to both an infrastructure-side server and spontaneously interconnected mobile smartphones; our solution is able to tune the BS behavior of the FiWi domain and to reroute/prioritize traffic in the Edge IoT domain, with the final goal to reduce latency. In addition, the reported application case shows the capability of our solution of joint and coordinated exploitation of resources in FiWi and Edge IoT domains, with performance results that highlight its benefits in terms of efficiency and responsiveness

    Evaluation of Environmental Conditions on Object Detection Using Oriented Bounding Boxes for AR Applications

    Get PDF
    The objective of augmented reality (AR) is to add digital content to natural images and videos to create an interactive experience between the user and the environment. Scene analysis and object recognition play a crucial role in AR, as they must be performed quickly and accurately. In this study, a new approach is proposed that involves using oriented bounding boxes with a detection and recognition deep network to improve performance and processing time. The approach is evaluated using two datasets: a real image dataset (DOTA dataset) commonly used for computer vision tasks, and a synthetic dataset that simulates different environmental, lighting, and acquisition conditions. The focus of the evaluation is on small objects, which are difficult to detect and recognise. The results indicate that the proposed approach tends to produce better Average Precision and greater accuracy for small objects in most of the tested conditions

    AWPP: A New Scheme for Wireless Access Control Proportional to Traffic Priority and Rate

    Get PDF
    Cutting-edge wireless networking approaches are required to efficiently differentiate traffic and handle it according to its special characteristics. The current Medium Access Control (MAC) scheme which is expected to be sufficiently supported by well-known networking vendors comes from the IEEE 802.11e workgroup. The standardized solution is the Hybrid Coordination Function (HCF), that includes the mandatory Enhanced Distributed Channel Access (EDCA) protocol and the optional Hybrid Control Channel Access (HCCA) protocol. These two protocols greatly differ in nature and they both have significant limitations. The objective of this work is the development of a high-performance MAC scheme for wireless networks, capable of providing predictable Quality of Service (QoS) via an efficient traffic differentiation algorithm in proportion to the traffic priority and generation rate. The proposed Adaptive Weighted and Prioritized Polling (AWPP) protocol is analyzed, and its superior deterministic operation is revealed

    Hybrid 5G optical-wireless SDN-based networks, challenges and open issues

    Get PDF
    The fifth-generation (5G) mobile networks are expected to bring higher capacity, higher density of mobile devices, lower battery consumption and improved coverage. 5G entails the convergence of wireless and wired communications in a unified and efficient architecture. Mobile nodes, as defined in fourth-generation era, are transformed in heterogeneous networks to make the front-haul wireless domains flexible and intelligent. This work highlights a set of critical challenges in advancing 5G networks, fuelled by the utilisation of the network function virtualisation, the software defined radio and the software defined networks techniques. Furthermore, a novel conceptual model is presented in terms of control and management planes, where the inner architectural components are introduced in detail
    • …
    corecore